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ABSTRACT

Robotic systems, such as autonomous unmanned aerial vehicles
(UAVs) and self-driving cars, have been widely deployed in many
scenarios and have the potential to revolutionize the future gener-
ation of computing. To improve the performance and energy effi-
ciency of robotic platforms, significant research efforts are being de-
voted to developing hardware accelerators for workloads that form
bottlenecks in the robotics software pipeline. Although domain-
specific accelerators can offer improved efficiency over general-
purpose processors on isolated robotics benchmarks, system-level
constraints such as data movement and contention over shared re-
sources can significantly impact the achievable end-to-end acceler-
ation. In addition, the closed-loop nature of robotic systems, where
there is a tight interaction across different deployed environments,
software stacks, and hardware architecture, further exacerbates the
difficulties of evaluating robotics SoCs.

To address this limitation, we develop RoSÉ, an open-source,
hardware-software co-simulation infrastructure for full-stack, pre-
silicon hardware-in-the-loop evaluation of robotics SoCs, together
with the full software stack and realistic environments created to
support robotics workloads. RoSÉ captures the complex interac-
tions across hardware, algorithm, and environment, enabling new
architectural research directions in hardware-software co-design
for robotic systems.
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Figure 1: RoSÉ provides an integrated co-simulation environ-

ment for both hardware and software, enabling pre-silicon

hardware-in-the-loop evaluation of robotics SoCs.

1 INTRODUCTION

A fruit fly can compute workloads that include trajectory planning,
visual/inertial odometry (VIO), classification, and closed-loop con-
trol, all while only consuming 120 nW [50]. State-of-the-art VIO
hardware consumes 2 mW when executing a standard benchmark
[54]—over 10,000× more power. Such a stark difference suggests
vast optimization opportunities for autonomous systems. How-
ever, closing the gap becomes increasingly challenging; with the
slowdown in technology scaling, it is no longer feasible to rely on
improvements in process technology and general-purpose proces-
sors to improve power efficiency and performance [25].

As a result, over the past decade, there has been a proliferation
of academic research groups, startups, and industrial R&D labs that
develop domain-specific accelerators (DSAs) to eke out remain-
ing performance improvements [17, 37–39, 43, 54, 56]. Although
DSAs deliver improved performance and energy efficiency for ap-
plications of interest, today’s accelerators are largely evaluated
in isolation, without considering the end-to-end performance of
the entire robotics pipeline. This is particularly important given
that robotics workloads often consist of a range of different algo-
rithms running concurrently, where the performance of a particular
accelerator is highly system-dependent and data-dependent.
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Specifically, on the system-dependent front, the performance of
each individual accelerator can be heavily impacted by system-level
resource contentions where multiple general-purpose cores and ac-
celerators are running together [29]. On the data-dependent front,
taking a flying drone as an example, while higher velocity can make
the drone move faster, it can also negatively impact the accuracy
of pose estimation, leading to suboptimal trajectory planning [19].
The system- and data-dependent nature of closed-loop algorithms
in robotics makes it infeasible to use traditional trace-driven simula-
tion frameworks for end-to-end performance evaluation. Recently,
the robotics community has adopted hardware-in-the-loop simula-
tion to assess the performance of robotics algorithms on specific
hardware [13], though it only works with off-the-shelf components,
without support for pre-silicon evaluation of hardware that has not
been fabricated yet.

To address the limitations, we develop RoSÉ, a hardware-software
co-simulation infrastructure to enable full-stack, pre-silicon, hardware-
in-the-loop evaluation of robotics SoCs, with a particular emphasis
on unmanned aerial vehicles (UAVs). Specifically, RoSÉ integrates
AirSim, a robotics environment simulator [51], supporting UAV
models, and FireSim, an FPGA-based RTL simulator [27], to capture
closed-loop interactions across environments, algorithms, and hard-
ware, as shown in Figure 1. Traditionally, robotics software and
hardware are evaluated in two separate simulation environments,
where the software is evaluated using off-the-shelf hardware while
the hardware is evaluated in RTL simulation using pre-recorded
data traces. Such a decoupled evaluation flow will not capture the
subtle interaction between hardware and software development,
especially in the context of hardware-software co-design for closed-
loop applications like robotics. RoSÉ addresses this challenge by
providing an integrated co-simulation environment for both hard-
ware and software to enable pre-silicon, hardware-in-the-loop eval-
uation for robotic SoCs. Our evaluation demonstrates that RoSÉ
holistically captures the closed-loop interactions between environ-
ment, algorithms, and hardware, opening up new opportunities for
systematic hardware-software co-design for robotic UAV systems.

In summary, this paper makes the following contributions:

(1) We build RoSÉ, a hardware-software co-simulation infras-
tructure for pre-silicon, full-stack evaluation of robotic UAV
SoCs. RoSÉ captures the dynamic interactions between ro-
botics hardware, software and environment1.

(2) We develop software algorithms and hardware SoCs in RoSÉ
to holistically evaluate the hardware-software co-design in
robotic systems.

(3) We demonstrate that RoSÉ enables large design space explo-
ration of robotics SoCs and identifies important hardware-
software design trade-offs.

2 BACKGROUND AND MOTIVATION

This section discusses the complexity of robotics applications, the
state-of-the-art hardware-in-the-loop evaluation methodology in
robotics, and opportunities for co-simulating both hardware and
software in robotic systems.

1RoSÉ is open-source and publicly available at https://github.com/ucb-bar/RoSE.
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Figure 2: Typical partitioning of tasks that are performed

on a UAV. The flight controller is typically a microcontroller

running baremetal code or an RTOS, while the companion

computer can have diverse architectures, including mobile

CPUs, GPUs, or domain-specific SoCs.

2.1 Application Complexity in Robotics

Robotics is a broad field spanning varying deployment scenarios,
each having its own unique target applications and constraints.
In this work, we focus on UAVs as they typically have extremely
tight weight, energy, and latency constraints. Naturally, UAVs have
strict performance requirements to avoid collisions and quickly
react to external events during flight. At the same time, to maintain
long flight times, UAVs also need to satisfy battery and weight con-
straints, limiting the amount of compute that can be hosted onboard
the UAV. These considerations lead to a diversity of deployment
scenarios for compute resources in UAV applications, ranging from
onboard companion computers [24], edge computers [35], and even
the cloud [22].

Figure 2 illustrates a typical deployment scenario in which all
computation is performed onboard the UAV. Specifically, robotics
tasks are partitioned between a flight controller (typically imple-
mented using a microcontroller) and a companion computer (typi-
cally an embedded SoC) [24]. The flight controller performs hard
real-time tasks, such as low-level control, and is a well-established
design point, where the STM32F4 microcontroller, running bare-
metal code or an RTOS such as FreeRTOS, is widely used across UAV
platforms. However, the companion computer runs a diversity of al-
gorithms, including simultaneous localization and mapping (SLAM)
pipeline for UAVs to infer their position, and perception tasks us-
ing machine learning (ML) and computer vision (CV) algorithms,
high-level control algorithms that control the behaviors of UAVs,
trajectory planning algorithms to produce a collision-free path, and
the low-level model predictive control (MPC). These algorithms
can differ significantly by application and can be implemented us-
ing a range of hardware architectures, including CPUs, GPUs, and
domain-specific SoCs [44, 46, 54].

2.2 Hardware-in-the-loop Evaluation of

Robotics SoCs

Recognizing the complexity of closed-loop interaction between
hardware and software in robotic systems, the robotics community

https://github.com/ucb-bar/RoSE
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has adopted a hardware-in-the-loop evaluation flow in which hard-
ware platforms are integrated with robotic environment simulators
to capture the interaction between hardware and software [8, 9,
21]. Recent efforts in the architecture community also highlight
the importance of hardware-in-the-loop evaluation. For example,
MAVBench [13] provides a benchmark suite of UAV workloads in a
hardware-in-the-loop evaluation. However, MAVBench only works
with off-the-shelf hardware, without support for pre-silicon, RTL-
level evaluation of hardware that has not been fabricated yet. This
restriction limits users to tuning post-silicon system parameters
such as core count and clock frequency, without access to a wider
range of microarchitectural parameters across accelerator design
and SoC integration.

2.3 Hardware-Software Co-Simulation for

Robotics

Computer architects have long been developing simulation infras-
tructures for general-purpose cores [12, 16], GPUs [28, 36], and
domain-specific accelerators [33, 45, 48, 49, 52]. In addition, to bet-
ter understand the behaviors of emerging applications, the archi-
tecture community has also developed software infrastructure for
workload characterization, e.g., MAVBench [13] for autonomous
UAVs and ILLIXR [26] for virtual and augmented reality. However,
these frameworks are designed for either hardware or software,
without considering the complex interactions between hardware
and software in an end-to-end fashion. This is especially important
for closed-loop applications like UAVs and self-driving cars, where
different software and hardware components are tightly coupled
with each other. For example, in a UAV, while a high sampling
rate in sensors generally improves the accuracy of the perception
and localization algorithms, it can also lead to more data transfer
between different stages of the processing pipeline, resulting in a
longer overall task time. Such complex interactions across sensing,
environments, algorithms, and hardware cannot be accurately cap-
tured using traditional hardware- or software-only evaluation flows.
RoSÉ is, to the best of our knowledge, the first to support end-to-end
evaluation of domain-specific systems through hardware-software
co-simulation for closed-loop robotics systems.

3 ROSÉ DESIGN

We present RoSÉ, a hardware-software co-simulation infrastruc-
ture that enables robotics developers to evaluate the end-to-end
performance of robotics hardware and software in closed-loop en-
vironments. The infrastructure contains three key components, as
illustrated in Figure 3. First, RoSÉ is built on top of AirSim [51] to
generate environments in which to run robotic UAV simulations.
Second, to simulate hardware SoC designs, RoSÉ uses FireSim, an
FPGA-accelerated RTL simulator, to evaluate the pre-silicon per-
formance of robotic hardware. In addition, RoSÉ also includes a
build flow for developing robotics applications for RISC-V SoCs.
The flow includes support for application development, runtime
environments, and tooling to generate RISC-V images. In particular,
RoSÉ integrates AirSim and FireSim together with synchronized
execution to accurately capture the hardware-software interactions
of robotic UAV systems. This section discusses how RoSÉ supports
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Figure 3: Overview of the RoSÉ hardware-software co-

simulation infrastructure for robotics.

Robotics Environment Simulators
Simulator Name Domain Simulation Mode Interface
AirSim [51] AV/UAV Realtime RPC/ROS
Gazebo [30] General Purpose Offline ROS
CARLA [20] AV Realtime ROS
MuJoCo [55] Rigid Body Offline ROS
PyBullet [18] Rigid Body Realtime/Offline ROS

Table 1: Robotics environment simulators.

environment simulation, hardware simulation, software build flow,
and co-simulation integration.

3.1 Environment Simulation

To simulate an end-to-end robotics application, it is necessary to
simulate the robot’s environment to generate sensor data and to
model the effects of actuation. Within the robotics community,
there are a wide variety of robotics environment simulators that
target different domains and use cases. Table 1 summarizes some
of the most widely used robotics environment simulators.

In this work, to focus our evaluation on UAV applications, RoSÉ
supports AirSim [51], a widely-used open-source environment sim-
ulator originally developed for real-time simulation and evaluation
of machine learning and reinforcement learning applications for
UAVs and autonomous vehicles. AirSim is a plugin for Unreal En-
gine and uses Unreal’s graphics engine for rendering camera data
and Unreal’s physics engine to handle collisions while using its
own internal physics models and inertial sensor models.

AirSim provides two APIs to interact with the simulator. First,
it has a remote-procedure-call (RPC) API for sensor readings and
actuation, as well as simulator commands (such as controlling sim-
ulator execution or changing time of day). Second, it exposes ROS
topics and services as wrappers for API calls. RoSÉ uses the RPC
API to send and receive AirSim data and serializes the data to
transmit to the I/O space of the modeled SoC. To integrate with
other simulators, the environment simulator needs to support dis-
crete time-stepping. These interfaces make it feasible to integrate
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environment simulators such as AirSim with the hardware RTL
simulation flow.

3.2 Hardware Simulation

In addition to the environment simulator, we also need to simulate
the SoC that is being evaluated. SoCs can be simulated at various
levels, including at the ISA level using tools like Spike [6], at the
architecture level using pre-RTL simulators such as gem5 [12], or
at the RTL level with RTL-based simulators like VCS or Verilator.
Tradeoffs between SoC simulators include simulation fidelity and
simulation throughput. The highest fidelity simulation occurs in
RTL simulation, but software RTL simulation is prohibitively slow
for evaluating the system-level behavior of robotics applications:
Simulating a 3-minute flight of a UAV would require more than
a year of simulation time by using RTL simulation, which runs
at several KHz on a high-end compute server. To mitigate this
cost, RoSÉ uses hardware-accelerated RTL simulation. Multiple
commercial solutions exist for accelerated RTL emulation, such as
Synopsys’ ZeBu or Cadence’s Palladium. However, such setups are
typically expensive for smaller research teams. To achieve cycle-
accurate accelerated RTL simulation, RoSÉ uses FireSim [27], an
open-source platform with FPGA-accelerated RTL simulation.

To support deterministic integration of external models (such as
for memories and IO devices), FireSim provides an interface for writ-
ing bridges, which enable arbitrating and synchronizing between
software tasks running on the simulation host, and registers on the
FPGA simulation target. Bridges consist of RTL wrappers around
modules in the simulated SoC, as well as bridge driver software
that runs on the host and interfaces with registers in the bridges.

RoSÉ builds on top of the FireSim infrastructure with the RoSÉ
Bridge, which synchronously models I/O between a companion
computer and a flight controller. The RoSÉ Bridge is exposed to
the target SoC as memory-mapped I/O registers on the system
bus, as depicted in Figure 4. The bridge itself consists of hardware
queues that buffer data being sent to and from the SoC, as well as a
control unit that can throttle the execution of the RTL simulation.
Section 3.4 details the implementation of the RoSÉ Bridge.

3.3 Software Build Flow

To build applications that will be evaluated on robotics SoCs, RoSÉ
provides a software build flow that targets RISC-V SoCs. There are
two supported flows, one for generating DNN-based workloads
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Figure 5: Functional block diagram of RoSÉ infrastructure

depicting both synchronizer and RoSÉ Bridge designs. The

synchronization controller and the RoSÉ bridge driver use

software queues to schedule and buffer packets between

synchronization steps, and RoSÉ Bridge contains hardware

queues to stage packets being transmitted over the modeled

IO interface, exposed as memory-mapped registers on the

SoC’s system bus.

and one for classical control workloads. To build DNN-based work-
loads, the infrastructure uses PyTorch and exports trained models
in ONNX format [3]. The ONNXmodels can then be executed using
ONNX-Runtime [4] either directly on CPUs or systolic-array-based
matrix accelerators like Gemmini [23].

To support conventional robotics applications, the infrastruc-
ture provides a port of the Robot Operating System (ROS) [47] for
RISC-V. RoSÉ provides ROS Noetic Ninjemys, and is built from
source for Fedora 32. Both the roscpp and rospy interfaces are
supported. Other commonly used libraries such as OpenCV [15],
tf2 [7], GMapping [5], Hector-Mapping [31], MoveIt [2] and other
ROS libraries are also supported.

3.4 Co-Simulation Architecture

RoSÉ executes a robotics UAV simulation by co-simulating an Air-
Sim environment with a FireSim-accelerated RTL simulation of
an SoC. An architectural diagram of the simulator is depicted in
Figure 5. To accurately simulate a trajectory of a robot, the simula-
tor must support synchronized execution between simulators, and
present a clear abstraction between the simulator infrastructure
and the modeled world, enabling realistic models for sensing and
actuation.

3.4.1 Synchronization. The two simulators must adhere to the
same simulation time. Although the simulators execute at different
rates in real-time, events occurring in one environment must be
observed at corresponding simulation times by the other simulator.
Both AirSim and FireSim step through time by using discrete time
steps. In AirSim, the minimum time period is a single frame, which
corresponds to a physics and rendering step. The amount of sim-
ulation time corresponding to a frame can be defined at runtime,
but a typical rate is 60-120Hz. On the other hand, as a digital RTL
simulation, the minimum unit of time is a clock cycle. Given the
disparity of the minimum time interval, typically many clock ticks
correspond to one AirSim frame.
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Figure 6: A representation of the lockstep synchronization

implemented in RoSÉ. As an example of a typical configura-

tion, if modeling a 1GHz SoC and updating AirSim 60 frames

per simulated second, synchronization occurs every 16 mil-

lion cycles.

RoSÉ implements a lockstep synchronization method, as de-
picted in Figure 6. A synchronization period is defined between
both simulators in terms of AirSim frames and SoC clock cycles.
The ratio between the two is defined in Equation 1, and is therefore
constrained by the target frequency of the SoC, a property of the
physical SoC being designed, and by the frequency of AirSim’s
physics updates, which are a tunable parameter.

airsim_steps
firesim_steps

=
soc_clock_freq

airsim_frame_freq
(1)

The main synchronization loop of RoSÉ is depicted in Algorithm 1.
The synchronizer runs as a separate process, communicating with
the AirSim server by using its RPC interface, and with FireSim by
using a TCP listener.

Communication with FireSim. TCP Packets are used to transmit
serialized synchronization and data packets. Packets consist of a
header, containing the packet type and number of bytes, as well
as a payload containing the serialized contents of the message.
RoSÉ transmits both synchronization packets and data packets.
Synchronization packets are used to communicate information
about the simulation state, such as the number of cycles FireSim
can advance every synchronization, and communicate with RoSÉ
Bridge but not the modeled SoC. Data packets encode sensor and
actuator data. Data packets are the only packets that are visible to
the simulated SoC and are accessible through queues pointed to
by memory-mapped registers on the system bus, as shown in the
FireSim side of Figure 5.

3.4.2 Simulation Abstraction. The simulated SoCmust be oblivious
to the fact that it is in a simulated environment. This means that the
SoC receives sensor data and performs actuation as it would in a
deployed environment by communicating through I/O devices. The
SoC does not have access to any simulation-level APIs, and runs the
same application as it would when deployed to facilitate sim-to-real
transfer. To achieve this, as shown in Algorithm 1, the synchronizer
receives all data communication from FireSim as serialized packets
which must then be translated into API calls within AirSim. As an
example, if the SoC requests IMU data it sends an IMU_REQ packet
over the RoSÉ I/O, which gets transmitted through queues in the
RoSÉ Bridge as depicted in Figure 5. The synchronizer receives
the packet, decodes it, and then makes an IMU request over RPC to

Algorithm 1 Synchronization Loop
𝑡 ← 0
⊲ % Write clock cycles per sync to RoSÉ Bridge HW%

set_firesim_steps(firesim_steps)
while 𝑡 < max_time do

⊲ % Poll simulators for new data, checking if

⊲ FireSim communicated over IO, or if AirSim

⊲ sent sensor data %

env_data← req_airsim_data()
rtl_data← req_rtl_data()
⊲ % Encode AirSim data to packets sent to FireSim %

if env_data then
serialized_data← encode(env_data)
transmit_to_rtl(serialized_data)

end if

⊲ % Translate IO packets into AirSim APIs %

if rtl_data then
for datum in rtl_data do

cmd← decode(datum)
call_airsim_api(cmd)

end for

end if

⊲ % Allocate tokens to start AirSim and FireSim %

allocate_airsim_frames()
allocate_rtl_frames()
airsim_running← True
rtl_running← True
⊲ % Poll simulators until both finish,

⊲ and advance by one synchronization step %

while airsim_running and rtl_running do
airsim_running← poll_airsim_state()
rtl_running← poll_rtl_state()

end while

𝑡 ← 𝑡 + sync_period
end while

AirSim. Finally, the IMU data is encoded as a packet and transmitted
back over the SoC’s I/O.

Additionally, commands sent to/from the SoC must model real-
istic interfaces. In a typical UAV system, the companion computer
does not directly interface with motors and low-level sensors, and
instead communicates through a flight controller, enabling the use
of intermediate-level controls such as position or velocity targets.
However, to ensure accurate modeling of the system it is important
to describe and partition the hardware and software being modeled
in RoSÉ, which is described in the following sections.

4 EVALUATION METHODOLOGY

This section describes the UAV system we modeled and the setup
of hardware, software, and environment used to evaluate RoSÉ.

4.1 Modeled System

RoSÉ models a full UAV system, including sensing, actuation, and
compute. A high-level block diagram of a UAV hardware platform is
depicted in Figure 7. The sensor models directly use measurement
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data from the AirSim APIs through sensors such as cameras or
Inertial Measurement Units (IMUs). However, modeling actuation
and compute is a more nuanced task in robotics UAV systems,
given the hierarchy of hardware and software controllers present
in typical UAVs. As an example, motor angular velocity is typically
controlled by mixed-signal circuitry in electronic speed controllers
(ESCs), which take in velocity targets from a flight controller.

Likewise, low-level control itself is handled by the flight con-
troller, which interfaces with low-bandwidth sensors such as IMUs.
The flight controller sends targets via pulse-width modulation
(PWM) to the ESCs, computed by using low-latency PID algorithms.
Moving up the hierarchy, targets for the PID controllers are gen-
erated by the companion computer running trajectory planners
or high-level control algorithms such as model predictive control
(MPC). The companion computer also does not directly interface
with sensors and actuators, instead communicating through the
flight controller over a protocol such as MAVLink [1]. Given that
flight controller behavior is well understood, in our experimental
setup, the flight controller is modeled using AirSim’s software-
in-the-loop controller. However, the companion SoC is simulated
using RTL simulation to accurately capture its compute and data
movement behaviors. This partitioning is depicted in Figure 7.

RoSÉ supports any sensor data and commands that can be seri-
alized through the synchronizer. For the evaluations in this paper,
the drone is equipped with a first-person view (FPV) camera with a
field-of-view (FOV) of 90 degrees. Additionally, the onboard flight
controller has access to an IMU. The companion computer sends
commands to the flight controller containing angular and linear
velocity targets.

4.2 Experimental Setup

4.2.1 Hardware. To evaluate the effect of the SoC architecture
on robot performance, we considered several different hardware
configurations. We use Chipyard [10], a framework for designing
and evaluating full-system hardware. The generated designs were
then compiled to FPGA bitstreams in FireSim. We generate two

Configuration A B C
CPU 3-wide BOOM Rocket 3-wide BOOM
Accelerator Gemmini Gemmini None
Table 2: Hardware configurations evaluated using RoSÉ.
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and lateral views of a trail.

types of CPU cores. For our in-order core, we use a Rocket CPU,
a 5-stage in-order scalar processor core generator[11], and for the
superscalar out-of-order CPU we use SonicBOOM, an open-source
RTL implementation of a RISC-V out-of-order core [57]. To add
DNN acceleration capacity to both cores, we generate a systolic-
array accelerator using Gemmini, a full-stack DNN accelerator
generator[23]. A summary of the generated designs is shown in
Table 2. As the DNNs being evaluated in this paper use floating-
point datatypes, Gemmini was configured to use FP32 data. For this
configuration, we generate a 4 × 4 FP32 mesh to match Gemmini’s
128-bit maximum memory bus width. The systolic array uses a
weight-stationary dataflow to match the workload, and we use a
256KB scratchpad with a 64KB accumulator.

4.2.2 Software. Software running on our simulated UAV is par-
titioned between a flight controller and a companion computer,
as illustrated in Figure 7. The following paragraphs discuss the
software that runs on both systems.

Flight Controller. The flight controller used in evaluations is
based on the SimpleFlight controller provided by AirSim. Simple
Flight contains a hierarchy of PID controllers that manage the
position, velocity, and angle of attack targets. The flight controller
takes in angular and velocity control targets from the companion
computer, and uses the control hierarchy to track the most recent
target recieved.

Companion Computer. The companion computer runs a full-stack
setup, running robotics UAV applications on top of a RISC-V Fedora
image running Linux 5.7.0-rc3. In particular, we evaluate DNN-
based high-level end-to-end controllers that have been widely used
for UAVs. Examples include ResNet-based controllers based on
classifiers such as DroNet [34, 41] and TrailNet [53]. DroNet uses a
dual-headed architecture, with one head outputting a target angle
and one head outputting a collision probability. TrailNet, on the
other hand, has a dual-headed classifier with one head outputting a
classification of the UAV’s angle relative to a trail and the other head
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Model ResNet6 ResNet11 ResNet14 ResNet18 ResNet34

Latency

(BOOM with

Gemmini)

77ms 83ms 85ms 130ms 225ms

Latency

(Rocket with

Gemmini)

101ms 108ms 125ms 185ms 300ms

Validation

Accuracy

72% 78% 82% 83% 86%

Table 3: Latency and accuracy of trained DNN controllers.

Figure 9: Visualizations of the environment setup for the

drone evaluations, showing the tunnel environment on the

top row and the s-shape environment on the bottom. The

left column shows the rendered UE4 environment, while the

right column is its top projection.

outputting a classification of the UAV’s lateral offset to a trail. The
ResNets evaluated in this work are based on TrailNet’s architecture
and are depicted in Figure 8, with 𝑦𝑙 as the lateral classification
and 𝑦𝜔 as the angular classification. The softmax outputs are then
used to compute target velocity, 𝑣𝑙 , and target angular velocity, 𝜔 ,
scaled by controller gains 𝛽 as shown in Equation 2. These targets
are used by the flight controller to navigate the UAV.

𝑣𝑙 = 𝛽𝑙 (𝑦left𝑙
− 𝑦right

𝑙
), 𝜔 = 𝛽𝜔 (𝑦right𝜔 − 𝑦left𝜔 ) (2)

We trained our own DNN models using the AirSim environment
described in Section 4.2.3. To train both heads of the DNN, the
data is split into an angular training dataset and a lateral training
dataset. Both datasets have three classes (left, center, and right),
with 2000 images sampled for each class, each with randomized
positions, angles, and textures, for a total of 12,000 images. Sample
images of each class are shown in Figure 8. The DNNs are then
evaluated on a separate dataset of 1200 validation images, where
we achieve 72% to 86% evaluation accuracy, comparable to the 85%
accuracy delivered by TrailNet. The accuracy and average latency
of the DNNs are listed in Table 3.

4.2.3 Environments. Figure 9 shows the environments we built
to evaluate the UAV system. The first tunnel is a straight path 50
meters in length and 3.2 meters wide. The second s-shape is an
“S" shaped trajectory of 80 meters in length. The task for the UAV is

On-Premise Deployment

Simulator AirSim FireSim

CPU Intel Core i7-3930K Intel Xeon Gold 6242
Frequency @3.2GHz @2.8GHz
GPU GeForceGTXTITANX N/A
FPGA N/A Xilinx U250
OS Ubuntu 18.04.6 LTS Ubuntu 18.04.6 LTS

Cloud Deployment (AWS)

Simulator AirSim FireSim

Instance g4dn.2xlarge f1.2xlarge

CPU Intel Xeon Platinum
8259CL

Intel Xeon E5-2686

Frequency @2.5GHz @2.3GHz
GPU Tesla T4 N/A
FPGA N/A Xilinx VU9P
OS Ubuntu 18.04.6 LTS CentOS 7.9.2009

Table 4: RoSÉ deployment configurations.

to perform visual navigation from the start to the end of the map,
avoiding collisions with the walls. tunnel tests the UAV’s ability
to precisely navigate a narrow path and achieve a stable trajectory
regardless of the initial conditions. s-shape is a wider map with
more room for error but requires constant correction from the drone
to avoid navigating into the boundaries. Our DNNs were trained
on tunnel and evaluated on both tunnel and s-shape.

4.2.4 Deployment. RoSÉ requires a GPU (for 3D rendering) and an
FPGA (to accelerate RTL simulation) in order to run simulations. For
the purpose of the evaluations in this paper, we tested both cloud
and on-premise deployments. For our cloud setup, we host AirSim
on a g4dn.2xlarge AWS instance, and deploy FireSim simulations
on an f1.2xlarge instance. For on-premise evaluation, we host
AirSim and FireSim on a desktop and server on a local network.
Both configurations are shown in Table 4. In our evaluation, we
execute the synchronizer node on the FireSim machine to reduce
latency to the RoSÉ Bridge, but it can be deployed on any device.

5 ROSÉ EVALUATION

RoSÉ enables holistic evaluation of robotics SoCs by co-simulating
hardware, algorithms, and environments in a closed-loop fashion.
To demonstrate the effectiveness of RoSÉ, this section discusses
opportunities to co-design SoC hardware, applications, and robot
behaviors of UAVs. Additionally, we also quantitatively evaluate
the tradeoffs between co-simulation accuracy and throughput.

5.1 Effects of SoC Architectures

By integrating the RTL simulation of an SoC, RoSÉ is able to pro-
vide insight into the effect of architectural choices on the behavior
of a robot. For the task of DNN-based navigation, we consider three
configurations described in Section 4.2.1. We deployed the SoCs
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Figure 10: UAV trajectories for different hardware configura-

tions. For each hardware configuration, three initial condi-

tions are set for−20◦, 0◦, and 20◦ degrees. EachUAV is running

a ResNet14 controller DNN setting a target velocity of 3m/s.

The tunnel boundaries are at 𝑦 = ±1.6m, marked by gray

dashed lines.

with the same initial conditions in the environment tunnel, sim-
ulating three different trajectories, starting at −20◦, 0◦, and 20◦
relative to the center.

When starting at 0◦, while an ideal UAV will not need to adjust
its lateral and angular motion, given that the UAV is taking off
from the ground, the UAV makes minor corrections to stabilize its
trajectory over time. On the other hand, for the angled starting
positions, the UAV first alters its trajectory before colliding with
the wall in front of it and then stabilizes its trajectory toward the
center of the tunnel.

We show the results of three case studies in Figure 10, where we
evaluate the hardware configurations listed in 2. First, we find that
UAVswith CPU-only SoCs as shown in Figure 10 (c) cannot navigate
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Figure 11: UAV trajectories generated by sweeping across

different DNN architectures. Above, we show a visualization

of the trajectories in the s-shape environment, below we

show the lateral position of the UAV in the environment

over time. The mission is completed upon reaching an x-
coordinate of 80.

the tunnel environment. We observe a 6-second latency between
an image request and control target update with a BOOM-only SoC,
resulting in the UAV colliding before an inference is made.

On the other UAVs controlled by SoCs with a DNN accelerator
have similar trajectories, and are less sensitive to whether a more
powerful CPU, i.e., BOOM, or a small CPU, i.e., Rocket, is driving
the accelerator in the tunnel environment. This type of subtle but
important hardware design space exploration for robotics SoCs
cannot be done without the closed-loop co-simulation capability in
RoSÉ.

5.2 Effects of Algorithm on Robot Behavior

To evaluate the impact of DNN architectures on robot performance,
we examine different ResNet configurations, listed in Table 3. Each
DNN was evaluated in the environment s-shape, with a flight ve-
locity target of 9m/s. Despite the fact that the larger ResNet config-
urations have a higher validation accuracy, they performed poorly
in flight, as shown in Figure 11. This is due to multiple factors:
First, because of their high latency, DNNs are prone to violating
deadlines while navigating, especially at higher speeds. Second, the
high capacity of the DNNs is, in practice, detrimental to the utility
of the DNNs as controllers, as they classify the headings and offsets
with a higher confidence level, resulting in sharper changes in tra-
jectory after each inference is performed. This factor, compounded
with the higher latency cost of DNNs, results in ResNet34 being
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unable to complete s-shape without multiple collisions. Further-
more, ResNet14 has the shortest mission time due to following the
most optimal trajectory.

On the other hand, there is a tradeoff for using a DNN that is
too small as well. As shown in Table 3, the ResNet6 and ResNet11
have lower accuracy, which results in both incorrect classifications,
as well as lower prediction confidence. Despite having the fastest
control loop, ResNet6 is unable to complete the trajectory without
collisions. Because control gains are computed proportionally to
softmax outputs, as in Equation 2, smaller DNNs result in lower
magnitude angular and lateral corrections. Not only do they make
incorrect predictions, moving the UAV closer to obstacles, but the
fact that they make less confident predictions results in a wider
turn radius. However, even if using an argmax policy on the DNN
outputs to compensate, ResNet6 is unable to complete the trajectory
due to poor classification accuracy and incorrect control outputs.

One of the key contributors to UAV performance is the ability
to perform its control loop within required deadlines. Deadlines
vary depending on the environment (e.g. the presence of obstacles),
properties of the robot (e.g. maximum acceleration), and the robot’s
state (e.g. current velocity.) Deadlines can be used by models to
set constraints on robotic systems, such as maximum safe velocity
[32], and can be either statically determined or set by dynamic
runtimes [14]. To demonstrate the effectiveness of RoSÉ, we define
the deadline, 𝑡process, as follows, to quantify the performance of the
drone’s trajectory navigation task:

𝑡collision =
𝐷obj

Velocity
(3)

𝑡collision ≥ 𝑡sensor + 𝑡process + 𝑡actuation (4)
𝑡process ≤ 𝑡collision − 𝑡sensor − 𝑡actuation (5)

Here, 𝑡collision is defined as the time until collision, and 𝐷obj is
defined as the depth of the closest object in the current heading
of the UAV. Equation 4 breaks down the time until collision into
sensor latency, compute latency, and actuation latency [40]. We can
then derive the compute latency in Equation 5; unless the UAV can
alter its trajectory before the deadline expires, a collision will occur.
This gives us the upper bound of compute time, which provides
RoSÉ users a benchmark to tune their configurations accordingly.

In addition to the DNN architecture, different settings for system
parameters will also affect robot behavior. As shown in Figure 12,
the effect of the target velocity outputted by the controller impacts
the UAV’s trajectory and the resulting quality of flight. When the
velocity is 6m/s, the UAV follows the safest trajectory; when the ve-
locity increases to 9m/s, the UAV completes the task in the shortest
mission time (12.14 seconds); however, when the velocity increases
to 12m/s, it results in a collision. These collisions occur directly
after deadline violations, as the 85ms needed to perform inference
violates the constraints set by the UAVs flight.

5.3 Effects of Dynamic Runtimes

RoSÉ supports evaluating workloads with dynamic, environment-
dependent runtimes. Instead of uniformly executing the same ResNet
in all scenarios, we adaptively select which DNN is used to generate
control targets depending on the system deadlines. We determine
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Figure 12: A sweep of the flight controller’s velocity targets

running ResNet14 on BOOM+Gemmini.

the deadline by measuring forward-facing depth-sensor readings
from the UAV.

We select ResNet14 as our high-accuracy, high-latency network,
and ResNet6 as our low-accuracy, low-latency network. When
the deadline is over a threshold, we use the classifier outputs for
ResNet14. However, when the UAV is at risk of collision, we dy-
namically switch to ResNet6 so that we can get updated control
targets faster. Furthermore, instead of scaling the control targets
by the DNN’s confidence, we use the argmax of both the angular
and lateral classes when using ResNet6, so that the UAV corrects
its trajectory faster.

By using a dynamic runtime, the companion computer SoC can
achieve a lower mission time while using fewer hardware resources,
as depicted in Figure 13. The application latency is determined by
the total time to complete the trajectory, while the accelerator
activity factor represents the fraction of time DNN accelerators
are actively executing layers. A lower activity factor frees system
resources for other applications and reduces energy consumption.

When statically selecting which DNN is used, system designers
can reduce the activity factor by running a smaller DNN, which
comes at the cost of a longer mission time due to sub-optimal UAV
control. However, RoSÉ reveals that dynamically selecting DNNs
can achieve reduced activity factors while also improving mission
time. This is despite the overhead of hosting two ONNX Runtime
sessions, which results in 15% fewer inferences performed in the
dynamic application compared to statically running ResNet14. This
evaluation depends on an end-to-end closed-loop simulation envi-
ronment because the UAV behavior depends on data-dependent in-
ference latencies and tradeoffs across the hardware/software stack.
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mission time, velocity, and DNN activity for two hardware ar-

chitectures: BOOM+Gemmini, and Rocket+Gemmini. RoSÉ

reveals differing optimal design points when the SoC archi-

tecture is changed.

5.4 Evaluating Hardware/Software Co-Design

Finally, RoSÉ enables the comparison of different hardware archi-
tectures in combination with different algorithms. By sweeping
across DNN architectures for both BOOM+Gemmini as well as
Rocket+Gemmini, we observe different system-level behavior be-
tween the two architectures. When BOOM is used, ResNet14 is
the optimal design point in terms of both latency and accuracy,
resulting in the shortest mission time and fastest flight velocity.
However, when using Rocket, the SoC design struggles to complete
the trajectory without recovering from collisions, resulting in sig-
nificantly higher mission times compared to BOOM. In this case,
ResNet6 even performs better compared to larger networks such as
ResNet11, as the DNN’s low latency is more critical to compensate
for Rocket’s lower performance. In this case, ResNet11 is a poor
design choice compared to the lower latency of ResNet6 and the
higher accuracy of ResNet14. Compared to hardware-in-loop sim-
ulation with pre-existing hardware, this experiment reveals how
RoSÉ can identify how optimal design points can change when
changing architectural features beyond core and frequency scaling.
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Figure 15: RoSÉ throughput measurements and bottlenecks

on a local FPGA deployment, sweeping across synchroniza-

tion granularities. Simulation throughput is bottlenecked

both by the maximum possible FPGA throughput as well as

by the minimum synchronization period.

5.5 Evaluating Effects of Synchronization

Granularity

RoSÉ supports a user-configured synchronization rate between
the RTL simulation and the environment simulation. To evaluate
the trade-off between fine- and coarse-grained synchronization, we
perform an experiment sweeping the synchronization granularity of
the simulator while keeping initial conditions the same, as shown in
Figure 16. We show the trajectories generated by RoSÉ in Figure 16
(a), as well as a close-up of the first few meters of the UAV’s flight
in Figure 16 (b) where the trajectories start to diverge. Each point
marked on the trajectory marks the end of a synchronization period
during which the simulated SoC requested an image. We notice that
as the synchronization granularity increases, the UAV becomes less
responsive due an artificial latency induced by synchronization,
both when requesting images and when sending a command back
to the UAV.

An important consequences of changing synchronization granu-
larity is impact on the delay between subsequent inferences, mea-
sured in simulation time. At a finer granularity, the inferences are
unaffected by the synchronization rate. However, as granularity
increases to greater than 20 million cycles, inferences have a much
more significant delay. This is because AirSim finishes its simula-
tion quickly and then waits for FireSim to finish. When FireSim
request the next image for reference, it has to stall until the next
synchronization period, at which point AirSim resumes and trans-
mits the necessary data. The synchronization period contributes to
latency, reducing the UAV’s performance. This effect is measured
in Figure 16 (c), where the latency between an image request and
DNN controller response is measured. While at a 10M granularity
synchronization the result is slightly above the expected 125ms
compute latency for the DNN (due to the overhead of loading the
image from the I/O), the measured latency continues to increase
as synchronization grows coarser. By 400M cycles, the observed
latency of 400ms is over 3× higher than the expected end-to-end
latency under ideal conditions.
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Figure 16: A comparison of the effects of synchronization granularity on the simulated trajectories of the UAV. For (a), the

UAV was set to the same initial angle of 20◦ in the tunnel environment, running ResNet14 at a target velocity of 3m/s. The

synchronization granularity was swept from 10M clock cycles/1 AirSim frame to 400M cycles/40 AirSim frames. Despite the

identical starting configuration, trajectories start to diverge due to different synchronization granularity. (b) zooms into the start

of each trajectory, marking each image request from the SoC with a point. Finally, (c) compares the measured simulation-time

delay between image requests and DNN outputs for each synchronization granularity.

However, despite the higher synchronization granularity intro-
ducing artificial latency, executing finely synchronized simulations
comes with a cost. Figure 15 shows the trade-off between FPGA
cycles executed per synchronization period and the FPGA sim-
ulation throughput. Finer granularity results in fewer cycles exe-
cuted per synchronization. This penalty becomes more severe when
the simulator is bottlenecked by the FireSim scheduler polling the
RoSÉ Bridge. Therefore, the synchronization granularity is a trade-
off between accuracy and performance. If users prefer accurate
simulation, then they should run a fine granularity simulation; if
users want a quick parametric sweep over a series of designs, then
larger granularity will provide faster simulation execution. How-
ever, given the results of this sweep, a synchronization granularity
of 10-100 million cycles per frame grants reasonable performance
without sacrificing accuracy.

6 FUTURE DIRECTIONS

Beyond the evaluation presented in this paper, users can use RoSÉ
to analyze dynamic behavior throughout the robotics stack. For
example, compared to DNN-based tasks, many classical algorithms
such as SLAM and nonlinear MPC build upon iterative optimization
algorithms or dynamically scaling data structures. These applica-
tions have data-dependent runtime behaviors and access patterns,
where RoSÉ can capture their performance implications on both
hardware and software.

Additionally, compared to the regular execution patterns of
DNNs such as TrailNet, state-of-the-art DNN workloads in robotics
also have more irregular execution patterns. For instance, controller
networks that perform sensor fusion have separate backbones for
each class of sensor [40]. In this case, branches of the network can
be executed at different rates depending on sensor data, provid-
ing opportunities for both software and hardware schedulers to
improve performance.

Finally, robots face different constraints across application do-
mains and robot morphologies, such as latency, energy, power, and
robustness. These domains include autonomous vehicles, industrial
robots, and humanoid robots. Future directions for RoSÉ include
integrating additional simulators such as CARLA [20] and Isaac
Gym [42] to enable more comprehensive coverage across robotics.

7 CONCLUSION

In response to the growing complexity of robotics workloads, hard-
ware, and applications, we propose RoSÉ, enabling robotics UAV
researchers and architects to comprehensively evaluate robotic
UAV SoCs. RoSÉ captures a full-stack simulation of a robot by
integrating the simulation of a robot UAV’s environment and its
RTL, enabling design space exploration of robot environments,
algorithms, hardware, and system parameters within a unified sim-
ulation environment.

RoSÉ enables researchers to better study and analyze the trade-
offs of robotics systems without the overhead of taping out an SoC.
Building upon RoSÉ by introducing new applications, robotics en-
vironments, and architectures will enable the agile development of
robotics SoCs across diverse domains.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact appendix describes how to use RoSÉ to run end-to-end
robotics simulations, and how to reproduce results as shown in
Section 5. The instructions assume that a user already has robotic
applications and hardware configurations developed, and provides
reference examples used in the evaluation of this work. While RoSÉ
can be used to develop new hardware and software, instructions to
do so are outside of the scope of the artifact evaluation.

A.2 Artifact Meta-Information Checklist

• Runtime environment: Ubuntu 18.04.6 LTS, Vitis v2021.1
• Hardware (FireSim): Intel Xeon Gold 6242, Xilinx U250
• Hardware (AirSim): AWS EC2 Instance (g4dn.2xlarge), Intel
Xeon Platinum 8259CL, Tesla T4.
• Required Disk Space: 200GB
• Experiments: AirSim/FireSim end-to-end full stack simulations of
a UAV using RoSÉ, running DNN-based controllers. Experiments
evaluate both UAV and simulator performance.
• Languages: Chisel (RTL), C++ (FireSim bridge drivers, robotic con-
trol software), Python (Synchronizer and scheduler.)
• Quantitative Metrics: DNN Latency, mission time, average flight
velocity, accelerator activity factor, as in Section 5.
• Qualitative Metrics: Flight trajectories, flight recordings.
• Output: CSV logs from the synchronizer, tracking UAV dynamics,
sensing requests, and control targets.
• Installation Time: 4 hours (scripted installation).
• Experiment Duration: 48 hours (scripted execution and parsing)
• Publicly available: Yes.
• Code licenses: Several, see download.

A.3 Description

A.3.1 How to access. The artifact consists of the core RoSÉ repos-
itory, as well as modifications to Firesim, Chipyard, and ONNX
Runtime, deployed by RoSÉ through patches.

(1) RoSÉ Core: Deployment, synchronization, and evaluation
software, as well as hardware configurations, and patches to
FireSim, Chipyard, and ONNX Runtime. (https://doi.org/10.
5281/zenodo.7824144)

(2) FireSim: Top-level FPGA-Accelerated RTL Simulation Envi-
ronment (https://github.com/firesim/firesim)

(3) Chipyard: RISC-V SoC generation environment (https://github.
com/ucb-bar/chipyard)

(4) RISCVONNXRuntime: Software for executingHW-accelerated
DNNmodels, modified for use in UAV control (https://github.
com/ucb-bar/onnxruntime-riscv/tree/onnx-rose).

Additionally, RoSÉ builds upon the following infrastructures. For
the purpose of the evaluation, binaries for simulators built from
Unreal Engine and AirSim are provided.

(1) Unreal Engine: 3D Environment development platform (https:
//www.unrealengine.com/en-US/ue-on-github)

(2) AirSim: UAV simulation plugin for Unreal Engine (https:
//github.com/microsoft/AirSim)

A.3.2 Dependencies - Hardware. To run a full simulation with
RoSÉ, access to a GPU and FPGA is required, although these can be
hosted on separate computers. For this artifact evaluation, instruc-
tions for running simulations on a locally-provisioned FPGA are

provided. However, RoSÉ can also be used using AWS EC2 FPGA
instances (e.g. f1.2xlarge). In this artifact we provide build scripts
for generating bitstreams for locally-provisioned FPGAs.

Additionally, GPU access is needed in order to run robotics envi-
ronment simulations with rendering. For this evaluation, AirSim
binaries packaged using Unreal Engine are provided.

A.3.3 Dependencies - Software. To use RoSÉ, ensure that Vitis and
Vivado v2021.1 are installed, licensed, and are correctly set on the
system PATH. All other requirements are automatically installed by
scripts in the following sections. If developingAirSim environments,
Unreal Engine 4.25 is needed.

A.4 Installation

Running all the steps below in a screen or tmux session is recom-
mended, as some commands may take several hours to execute.

To begin installation, download the artifact from Zenodo:

$ wget https://zenodo.org/record/7824144/files/RoSE.zip
$ unzip RoSE.zip && cd ./RoSE/

A.4.1 FireSim Installation. Begin by installing FireSim by running
the following commands within the RoSÉ repository.

$ git submodule update –init ./soc/sim/firesim
$ cd ./soc/sim/firesim
$ ./scripts/machine-launch-script.sh
$ ./build-setup.sh
$ source sourceme-f1-manager.sh
$ firesim managerinit –platform vitis

A.4.2 RoSÉ Installation. Begin by entering the RoSÉ repository:

$ cd RoSE

Next, within RoSÉ, run the setup script to set the proper envi-
ronment variables. Make sure to run this script whenever starting
a new interactive shell.

$ source rose-setup.sh

After this is complete, run the following script to patch FireSim
and Chipyard with the modifications described in Figure 5, and to
instantiate submodules.

$ bash soc/setup.sh

After this setup is complete, run the following script to build
binaries for the trail-navigation controllers evaluated in Section 4
for generating RISC-V Fedora images containing the controllers
and ONNX models.

$ bash soc/build.sh

Next, run the following script to install dependencies and con-
figure parameters for the RoSÉ deployment scripts, using the IP
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address of the GPU system that will be used to run the provided
AirSim binaries.

$ source deploy/setup.sh [AIRSIM IP]

A.4.3 BitstreamGeneration. To build bitstreams for Rocket+Gemmini
and BOOM+Gemmini configurations, run the following.

$ bash soc/scripts/buildbitstreams.sh

A.4.4 DNN Training. This artifact provides pre-trained models
for evaluation. To train new classifier DNNs using the provided
datasets, run the following, selecting between the given ResNet
configurations. Each training run will output an ONNX model
named trail_dnn_resnet[xy].onnx.

$ bash env/train/train_resnet.py (6|11|14|18|34|50)

Finally, the steps for building custom Unreal Engine maps are
out of the scope of this evaluation. However, new environments
can be built using the documentation provided at https://microsoft.
github.io/AirSim/build_linux/.

A.5 Experiment Workflow

Before running any experiments, first run provided AirSim exe-
cutable on a GPU instance, which can be left running for all sim-
ulations. This binary contains models for both the tunnel and
s-shape environments. Ensure that port 41451 is open for TCP on
the GPU instance to be able to access AirSim.

$ bash env/world/airsim_s/LinuxNoEditor/Blocks.sh

Now that the environment has been set up and the target hard-
ware and software have been built, one can run the experiments
in this work by launching an AirSim simulation and running the
following scripts. All the experiments can be executed by run-
ning run-all.sh. This will generate CSV files as well as videos
recorded from the front-facing camera of the simulated UAV in
deploy/hephaestus/logs/.

$ bash deploy/scripts/run-all.sh

To run individual experiments corresponding to the figures in
this work, we provide the following scripts, which are all included
in the main script.

# Figure 10
$ bash deploy/scripts/tunnel-exp.sh
# Figures 15, 16
$ bash deploy/scripts/rose-perf-sync-only.sh
$ bash deploy/scripts/rose-perf-tunnel-exp.sh
# Figures 11, 14
$ bash deploy/scripts/rose-hw-sw-sweep.sh
# Figure 12
$ bash deploy/scripts/rose-velocity-sweep.sh
# Figure 13
$ bash deploy/scripts/rose-dynamic-exp.sh

A.6 Figures and Evaluation

After executing the prior experiments, figures can be generated
using the CSV outputs by running the following command. The
figures will be available in deploy/figures/.

$ python3 deploy/scripts/generate-figures.py

A.7 Interpreting Results

It is expected to have some variations in trajectories and mission
times across multiple simulations with the same initial conditions.
This is caused by randomness in Unreal Engine that influences
experimental results despite the fact that FireSim itself is determin-
istic. Examples include animation in the environment, as well as
noise in the AirSim physics models used for simulated sensing and
actuation.

This variation has more impact on unsafe/poorly performing
configurations, particularly those with UAV collisions, as minor
variations in the angle of attack during a collision can result inmajor
trajectory differences afterward. On the other hand, stable flights
that do not approach any obstacles will have minimal variation
between simulations.

In addition to using the generated plots, it is useful to view
the generated first person videos stored in the log directories to
qualitatively analyze how a controller performs on the recorded
data.

A.8 Experiment Customization

A.8.1 Building New FPGA Images. In addition to the provided
SoC configurations, users can evaluate other designs. To evalu-
ate new designs, refer to the Chipyard documentation, as well
as the example RoSE-annotated configs found in soc/src/main/
scala/RoSEConfigs.scala.

A.8.2 Designing AirSim Environments. If users install Unreal En-
gine aswell as AirSim, it is possible to create newmaps/environments
for robot agents to interact with. By default, one can modify the
Blocks environment provided by AirSim. Additional assets and
maps can be designed by users or obtained from the Unreal Mar-
ketplace.

A.8.3 Changing Simulation Parameters. RoSÉ provides flags that
can be used to select different simulation parameters. To view
available parameters for deploying simulations, refer to deploy/
hephaestus/runner.py. Example configurations include changing
simulation granularity, or deploying a car vs a drone simulation.

Additionally, new controller ONNX models can be trained using
the provided dataset and evaluated using the provided drone_test
executable.

https://microsoft.github.io/AirSim/build_linux/
https://microsoft.github.io/AirSim/build_linux/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Application Complexity in Robotics
	2.2 Hardware-in-the-loop Evaluation of Robotics SoCs
	2.3 Hardware-Software Co-Simulation for Robotics

	3 RoSÉ Design
	3.1 Environment Simulation
	3.2 Hardware Simulation
	3.3 Software Build Flow
	3.4 Co-Simulation Architecture

	4 Evaluation Methodology
	4.1 Modeled System
	4.2 Experimental Setup

	5 RoSÉ Evaluation
	5.1 Effects of SoC Architectures
	5.2 Effects of Algorithm on Robot Behavior
	5.3 Effects of Dynamic Runtimes
	5.4 Evaluating Hardware/Software Co-Design
	5.5 Evaluating Effects of Synchronization Granularity

	6 Future Directions
	7 Conclusion
	8 Acknowledgements
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Meta-Information Checklist
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Figures and Evaluation
	A.7 Interpreting Results
	A.8 Experiment Customization


